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LETTER TO THE EDITOR 

An exact solution to the problem of a single-quantized field 
mode interacting with a certain multilevel atomic system 

S Swain 
Department of Applied Mathematics and Theoretical Physics, The Queen’s University 
of Belfast, Belfast BT7 INN, Northern Treland 

Received 17 December 1973 

Abstract. Exact solutions are given to the eigenvalue problem of a single, quantized 
field mode interacting in the dipole approximation with a single atom which has N -  1 
levels of one parity and one level of the opposite parity. 

In this letter we consider an atomic system consisting of N levels, where ( N -  1) levels 
are of one parity, and the other level is of the opposite parity, so that transitions can 
take place from the unique level to any of the other levels through the dipole coupling. 
The situation is depicted schematically in figure 1, where for convenience we have 
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Figure 1. Transitions allowed in the dipole approximation between one state of 
negative parity and N - 1 states of positive parity. 

taken the unique level to have negative parity and the lowest energy. We assume that 
there is only one field mode, and we use a quantum-mechanical model. In addition to 
being more general, the quantum approach is basically simpler than the semi-classical 
in that the hamiltonian is time independent in the former case, and we therefore have 
to solve only the time-independent Schrodinger equation. 
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In two previous papers (Swain 1972, 1973a) we have given exact solutions to the 
simpler problem of a two-level atom interacting with a single quantized field mode. 
Our results were expressed in the form of continued fractions, which have been used 
before in the following references to state exact solutions of related problems. Autler 
and Townes (1955) and Swain (1973b) have considered the corresponding problem in 
which the quantized field is replaced by a classical field (the semi-classical problem). 
The connection between the quantum and semi-classical treatments has been discussed 
by Swain (1973~). Stenholm and Lamb (1969) and Shimoda (1970) have independently 
developed a density-matrix approach to the semi-classical problem where pumping and 
decay of the two atomic energy levels is taken into account. However, as far as the 
author is aware, the present letter is the first to apply the continued fraction approach 
to atomic systems having more than two levels. 

Explicitly, our hamiltonian is 

k=l  k = 2  

where E ,  denotes the energy of the kth atomic state, Ik >, w the energy of the field mode, 
a and at the usual annihilation and creation operators for the field, and g 1 , k  the 
coupling constant for transitions from state 11 ) to state Ik). We have made the dipole 
approximation, but at no stage do we make the rotating wave approximation. 

Our approach is to find the eigenvectors of H by solving the Schrodinger equation 

HIX) = E,jX). (2) 
Of course, once this problem is solved, we can express all the properties of the system, 
including the time-dependent ones, in terms of these eigensolutions. We expand ] A )  in 
terms of the eigenstates of the non-interacting system, Ik, n ) : 

m N  

where n is the photon occupation number, and the A k s n  are coefficients to be deter- 
mined. The latter will be functions of the eigenvalue E,, but we do not show this 
explicitly here. By substituting (3) into (2), and equating to zero separately each 
coefficient of Ik, n), we obtain the following set of N difference equations: 

N 

(EA-El-nw)Al ,n  = 2 (gl,k(n+ 1)112Ak ,n+l+~ ,kn1 i2Ak .n -1 )  (4) 
k = 2  * 

(E, -Ek-nw)Ak, .  =g~,~(n+1)112A~,~+~+gl,k~1i2Al,n-l k = 2, 394, * - 9  N .  ( 5 )  

By substituting from (5) into (4) we can obtain a difference equation in the A l , n  only: 
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and i t  has solutions of the form 

for any non-negative integers. In (7h), only those values o fp  are allowed which ensure 
. ~ - 2 p  3 0. The quantities a ,  and 19, have yet to be determined. is fixed (apart from 
a phase factor) by the condition that ] A )  be normalized. We have chosen the particular 
solution ( 7 )  because it  has the correct physical properties. (That is, as l g 1 , k l  + 0 we 
recover the eigenstates of the non-interacting system. When this limit is taken, .r 
corresponds to the number of photons present.) 

If we assume first n = s+2p in (6b) and substitute from (7a), and then assume 
n = s - 2 p  and substitute from (7h), we find the following equations for a ,  and P,,: 

p = 1 , 2 , 3 , .  . . 

p =  1 . 2 . 3  ) . . .  . 

I Rs + 2P l 2  
% + Z P  = Dst21,- ___ 

I Rs - 2P - 2 l 2  
8 s - 2 ,  = D s - z p -  

1 9 s - 2 P - 2  

X S t  2 p + 2  

( 8 h )  

These equations show that the a ,  and p, may be expressed as continued fractions. 
We now assume n = s in (6b) and substitute from (7a) and (7b), when we obtain a 
relation between the a and 8. This relation may be written in a particularly neat form 
if we extend (8) to include p = 0 so that as and ,& may be defined. The relation may 
then be written 

x and ,R are defined by the relations (8) in terms of E,, which has not yet been deter- 
mined. However, (9) gives a further condition of the a and 19, and it may be regarded 
as the equation which determines E),. It therefore plays the role of an eigenvalue 
equation. 

Once E, has been evaluated explicitly, the a and 19, and thus the Ai,Sf2P, can be 
found. The A k , S + p p f l  can be found from (5). Thus 

Substituting the expressions (7) and (11) for the A k , ,  into (3), we finally obtain for the 



Letter to the Editor L55 

eigenket j X :i 

where for simplicity we have assumed s to be even and we have shown explicitly those 
quantities on the right-hand side of (12) which depend on E,. 

Our results apply of course to the two-level system previously treated if we take 
N = 2 ,  but our expressions take a different form to those presented in Swain (1973a). 
Although the expressions we obtain are complex, it is straightforward to approximate 
the continued fractions to obtain explicit expressions, or to evaluate them numerically, 
as may be verified by consulting the references previously quoted. 

The research reported was accomplished with the support of the US Office of Naval 
Research, under Contract N00014-69-C-0035. 
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